請記住本站域名:
黃金屋
我只想當(dāng)一個安靜的學(xué)霸 365章 出題
沈奇為盤院士團(tuán)隊提供了一套全新的量子密鑰設(shè)定理論體系,可預(yù)知的應(yīng)用場景包括軍事、金融、通信、互聯(lián)網(wǎng)等領(lǐng)域,它將使別有用心的黑客無功而返,軍隊的聯(lián)絡(luò)系統(tǒng)會更可靠、老百姓的銀行卡會更安全。
量子密碼的大規(guī)模應(yīng)用需要依附量子基礎(chǔ)物理,QPU全面取代CPU不是朝夕之事,但盤院士的團(tuán)隊至少明確了未來的研究方向,天上有墨子號量子衛(wèi)星,地上有全新的量子密鑰,他們很清楚接下來該做什么。
《黎曼定理素數(shù)載體量子密鑰系統(tǒng)》這套理論體系暫時無法公開發(fā)表,沈奇悄然離開量子計算機(jī)實驗室,去干一件可以向全世界公開的事情。
今天是周日,沈奇在酒店房間閉關(guān)一整天,將思路從黎曼定理轉(zhuǎn)換到黎曼流形,他暫且忘掉數(shù)論與量子物理,集中精神鉆研代數(shù)幾何與拓?fù)洹?p/>
“黎曼這人真的是精力充沛,在哪個領(lǐng)域都能看到他的名字。”沈奇根據(jù)黎曼流形的一項基本性質(zhì),在其每個切空間中取標(biāo)準(zhǔn)正交基,以便簡化局部計算。
霍奇猜想的拓?fù)鋵W(xué)版塊是沈奇本次回國需要解決的另一個重大課題,全世界都知道他在嘗試攻克霍奇猜想。
次日,周一,沈奇來到晨興數(shù)學(xué)中心:“吳主任,兄弟們,剛剛結(jié)束的四天假期,過的還算愉快吧?”
“我和老婆爬了趟長城,這是我人生中第十八次當(dāng)好漢。”吳主任聳了聳鼻涕,他在第十八次長城之旅中被冷風(fēng)吹感冒了。
“我哪也沒去,就在家?guī)蕖!币晃恍樟旱难芯繂T說到。
“我去了趟大理,天南海北的漂亮姑娘有不少,可惜一個號碼都沒要到。”研究員小卞扼腕嘆息。
“看來大家的假期生活挺精彩嘛。”沈奇笑道。
五十幾歲的吳主任的娃讀大三,他和太太選擇近郊游。
三十幾歲的梁研究員剛剛當(dāng)?shù)x擇在家?guī)蕖?p/>
二十八九歲的小卞目前單身,他選擇去大理旅游,期待一場艷遇。
吳主任和他的研究員們普遍晚婚晚育,除了單身的,其他人的休閑放松時光大多和家人一起度過。
顧家的男人值得信任,沈奇了解到這間會議室中的其他六位男人有五位已婚,其中三位是巨蟹座,他們愛老婆疼孩子,孝敬父母和岳父岳母。
“沈教授去哪里瀟灑了?”單身狗小卞問到。
“我啊,首都四日游唄。”未婚但不單身的沈奇說到,他將一個U盤遞給小卞:“關(guān)于霍奇猜想的拓?fù)鋵W(xué)方法,我這幾天寫了點心得,希望能與大家分享,卞工,你幫忙投影出來。”
沈奇的心得投放到屏幕上,吳主任的六人團(tuán)隊全神貫注盯著屏幕,假期已結(jié)束,他們重新投入工作。
沈奇開始講解他的心得:“基于瑟斯頓幾何化猜想的八個標(biāo)準(zhǔn)模型進(jìn)行衍生推導(dǎo),是我們之前確定的核心邏輯。吳主任,你們在過去的幾個月中完成了標(biāo)準(zhǔn)球面S、歐氏空間R、雙曲空間H3這三個標(biāo)準(zhǔn)模型的衍生推導(dǎo)工作,你們在特殊線性群的萬有覆蓋上的左不變黎曼度量上遭遇困難。”
“特殊線性群的萬有覆蓋上的左不變黎曼度量這個標(biāo)準(zhǔn)模型的衍生推導(dǎo)工作,是八個標(biāo)準(zhǔn)模型中最復(fù)雜的一個,我做了一次推演,請看大屏幕。”沈奇切換到下一頁,說到:“復(fù)流形的過渡映射是全純映射,我對柯西黎曼方程進(jìn)行新的處理,得到了一個有趣的結(jié)果,Γ是1維復(fù)流形,它的幾何與拓?fù)湫再|(zhì)是那么的與眾不同……”
沈奇用了整整一上午的時間,宣講了他關(guān)于最復(fù)雜標(biāo)準(zhǔn)模型衍生推導(dǎo)的詳細(xì)過程和最終結(jié)論。
沈奇的第一遍講解,僅有吳主任一個人聽懂了。
一個星期之內(nèi)沈奇連講六遍,結(jié)合新的靈感,他邊講邊修訂,終于在禮拜六鎖定方案,吳主任團(tuán)隊六人全都理解了沈奇的思路。
“所以我們完成了八個標(biāo)準(zhǔn)模型中四個的推導(dǎo)工作,我的建議是,接下來大家按照我對黎曼度量標(biāo)準(zhǔn)模型的推導(dǎo)思路邏輯,解決剩下四個標(biāo)準(zhǔn)模型。”沈奇作出總結(jié),給出建議。
“收到!”吳主任團(tuán)隊得到了沈奇的真?zhèn)鳎磥硪欢螘r間他們將根據(jù)沈奇設(shè)定的推導(dǎo)思路完成后面的工作。
盤院士的量子密鑰問題搞定了,吳主任的拓?fù)鋵W(xué)問題也搞定了,沈奇留給大家的印象是高效、負(fù)責(zé)、專治疑難雜癥。
除了高端學(xué)術(shù)研究,沈奇也很關(guān)心中小學(xué)生的數(shù)學(xué)教育。
奧數(shù)競賽主辦方中華數(shù)學(xué)會征得沈奇同意,將沈奇的照片藝術(shù)化處理后掛在官網(wǎng)首頁。
今年的CMO如火如荼的進(jìn)行著,報名人數(shù)創(chuàng)歷史新高。
沈奇應(yīng)邀來到中華數(shù)學(xué)會,承擔(dān)起一項重要工作出題。
“沈教授,你拿過CMO冠軍、IMO冠軍,都是滿分,今年CMO國決最后一題由你來出,再合適不過了。”CMO組委會負(fù)責(zé)人說到。
“好說。”
沈奇走到小黑板前,拿起粉筆當(dāng)場出題:
設(shè)n是一個正整數(shù),(x,y,z)∣x,y,z0,1,2,……,n,xyz>0}這樣一個三維空間中具有(n1)31個點的集合,問:最少要多少個平面,它們的并集才能包含S但不含(0,0,0)?
沈奇拍拍手上的粉筆灰:“嗯,這就是我出的題,有點難度,符合CMO國決最后一題的標(biāo)準(zhǔn)。”
這間會議室里其余三人盯著黑板上的題目陷入沉思。
“這題的設(shè)定思路非常巧妙,利用高中數(shù)學(xué)知識,加上一些并不深奧的課外補(bǔ)充知識,高中生們應(yīng)該有可能求解出正確答案。”譚副會長最先開口作出點評。
沈奇的老朋友劉干事說到:“有可能?我預(yù)測全中國能求出正確答案的高中生人數(shù)不會超過一巴掌。”
沈奇忽然想起一件事情:“各位領(lǐng)導(dǎo),我心中有個謎團(tuán)一直未能解開,當(dāng)初我參加的那屆CMO國決,最后一題有幾位選手拿到滿分?”
劉干事說到:“沈奇你那屆國決的最后一題太變態(tài)了,確實變態(tài),我記得很清楚,當(dāng)時由我閱卷,那題要求參賽選手證明根號2是無理數(shù),但不許使用幾何作圖法。所有參賽選手中只有兩人在不使用幾何作圖法的情況下,成功證明根號2是無理數(shù),其中一個就是你沈奇。”
“根號2那題挺有意思的,對了,另外一位選手現(xiàn)在在干嘛?”沈奇饒有興趣的問到。
“他入選過奧數(shù)國家隊,被保送到了水木大學(xué)數(shù)學(xué)系,后來去了哪里我也不是太清楚,據(jù)說去美國深造了吧?”劉干事不太確定的說到。
“叫啥名?”沈奇又問。
劉干事:“他叫于磊,跟沈奇你同一期入選國家隊。”
“居然是他,于磊!”沈奇愣了一下,隨即大笑:“于磊目前在普林斯頓數(shù)學(xué)系讀博,他的博士生導(dǎo)師是我。”
“這么巧?”劉干事、譚副會長均感意外,也覺得挺好玩。
當(dāng)初只有兩位高中生證明了最難最變態(tài)的一道奧數(shù)題,現(xiàn)在兩人是師生關(guān)系。
一直沒開口的孔干事終于說話了:“各位,咱們還是聊聊黑板上沈奇出的這題吧,老譚,老劉,你倆能求出這題的答案嗎?”
快捷鍵: 上一章("←"或者"P") 下一章("→"或者"N") 回車鍵:返回書頁